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ABSTRACT

We study the Strichartz estimates for the magnetic Schrödinger equa-
tion in dimension n ≥ 3.More speci�cally, for all Schrödinger admissible
pairs (r, q), we establish the estimate

‖eitHf‖
L
q
t (R;L

r
x(R

n))
≤ Cn,r,q,H‖f‖L2(Rn)

when the operator H = −1A + V satis�es suitable conditions. In the
purely electric case A ≡ 0, we extend the class of potentials V to the
Fe�erman–Phong class. In doing so, we apply a weighted estimate for
the Schrödinger equation developed by Ruiz and Vega. Moreover, for

the endpoint estimate of the magnetic case in R
3, we investigate an

equivalence

‖H
1
4 f‖Lr(R3) ≈ CH,r

∥∥(−1)
1
4 f
∥∥
Lr(R3)

and�nd su�cient conditionsonH and r forwhich theequivalenceholds.
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1. Introduction

Consider the Cauchy problem of the magnetic Schrödinger equation in R
n+1 (n ≥ 3):

{
i∂tu − Hu = 0, (x, t) ∈ R

n × R,

u(x, 0) = f (x), f ∈ S .
(1.1)

Here, S is the Schwartz class, and H is the electromagnetic Schrödinger operator

H = −∇2
A + V(x), ∇A = ∇ − iA(x),

where A = (A1,A2, · · · ,An) : Rn → R
n and V : Rn → R. Themagnetic �eld B is de�ned by

B = DA − (DA)T ∈ Mn×n,

where (DA)ij = ∂xiA
j, (DA)T denotes the transpose of DA, andMn×n is the space of n × n

real matrices. In dimension n = 3, B is determined by the cross product with the vector �eld

curlA:

Bv = curlA × v (v ∈ R
3).

CONTACT Youngwoo Koh ywkoh@kongju.ac.kr Department of Mathematics Education, Kongju National University,
Kongju, 32588, Republic of Korea.
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1468 S. KIM AND Y. KOH

In this paper, we consider the Strichartz type estimate

‖u‖Lqt (R;Lrx(Rn))
≤ Cn,r,q,H‖f ‖L2(Rn), (1.2)

where u = eitHf is the solution to problem (1.1) with solution operator eitH , and study some

conditions on A, V and pairs (r, q) for which the estimate holds.

For the unperturbed case of (1.1) that A ≡ 0 and V ≡ 0, Strichartz [33] proved the

inequality

‖eit1f ‖
L
2(n+2)

n (Rn+1)
≤ Cn‖f ‖L2(Rn),

where eit1 is the solution operator given by

eit1f (x) =
1

(2π)n

∫

Rn
eix·ξ+it|ξ |2 f̂ (ξ)dξ .

Later, Keel and Tao [23] generalized this inequality to the following:

‖eit1f ‖Lqt (R;Lrx(Rn))
≤ Cn,r,q‖f ‖L2(Rn) (1.3)

holds if and only if (r, q) is a Schrödinger admissible pair; that is, r, q ≥ 2, (r, q) 6= (∞, 2),

and n
r + 2

q = n
2 .

In the purely electric case of (1.1) that A ≡ 0, the decay |V(x)| ∼ 1/|x|2 has been known

to be critical for the validity of the Strichartz estimate. It was shown by Goldberg et al. [21]

that for each ǫ > 0, there is a counterexample of V = Vǫ with |V(x)| ∼ |x|−2+ǫ for |x| ≫ 1

such that the estimate fails to hold. In a positive direction, Rodnianski and Schlag [26] proved

‖u‖Lqt (R;Lrx(Rn))
≤ Cn,r,q,V‖f ‖L2(Rn) (1.4)

for non-endpoint admissible pairs (r, q) (i.e., q > 2) with almost critical decay |V(x)| .

1/(1 + |x|)2+ǫ . However, Burq et al. [3] established (1.4) for critical decay |V(x)| . 1/|x|2
with some technical conditions on V but the endpoint case included. Other than these, there

have been many related positive results; see, e.g., [20], [18], [1], [15] and [2].

In regard to the purely electric case, the following is the �rstmain result of this paper whose

proof is given in Section 2.

Theorem 1.1. Let n ≥ 3 and A ≡ 0. Then there exists a constant cn > 0, depending only on n,

such that for any V ∈ Fp (n−1
2 < p < n

2 ) satisfying

‖V‖Fp ≤ cn, (1.5)

estimate (1.4) holds for all n
r + 2

q = n
2 and q > 2. Moreover, if V ∈ L

n
2 in addition, then (1.4)

holds for the endpoint case (r, q) = ( 2n
n−2 , 2).

Here, Fp is the Fe�erman–Phong class with norm

‖V‖Fp = sup
r>0, x0∈Rn

r2
(
1

rn

∫

Br(x0)
|V(x)|pdx

) 1
p

< ∞,

which is closed under translation. From the de�nition of Fp, we directly get L
n
2 ,∞ ⊂ Fp

for all p < n
2 . Thus the class F

p (p < n
2 ) clearly contains the potentials of critical decay

|V(x)| . 1/|x|2. Moreover, Fp (p < n
2 ) is strictly larger than L

n
2 ,∞. For instance, if the
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COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS 1469

potential function

V(x) = φ

(
x

|x|

)
|x|−2, φ ∈ Lp(Sn−1),

n − 1

2
< p <

n

2
, (1.6)

then V need not belong to L
n
2 ,∞, but V ∈ Fp.

According to Theorem 1.1, for the non-endpoint case, we do not need any other conditions

on V but its quantitative bound (1.5), so that we can extend and much simplify the known

results for potentials |V(x)| ∼ 1/|x|2 (e.g., φ ∈ L∞(Sn−1) in (1.6)), mentioned above. To

prove this, we use a weighted estimate developed by Ruiz and Vega [28]. We remark that our

proof follows an approach di�erent from those used in the previous works.

Unfortunately, for the endpoint case, we need an additional condition that V ∈ L
n
2 .

Although L
n
2 dose not contain the potentials of critical decay, it still includes those of almost

critical decay |V(x)| . φ( x
|x| )min(|x|−(2+ǫ), |x|−(2−ǫ)), φ ∈ L

n
2 (Sn−1).

In case of dimension n = 3, we can �nd a speci�c bound for V , which plays the role of cn
in Theorem 1.1. We state this as the second result of the paper.

Theorem1.2. If n = 3, A ≡ 0 and ‖V‖L3/2 < 2π1/3, then estimate (1.4) holds for all 3r +
2
q = 3

2

and q ≥ 2.

To prove this, we use the best constant of the Stein–Tomas restriction theorem in R
3,

obtained by Foschi [16], and apply it to an argument of Ruiz and Vega [28].

Next, we consider the general (magnetic) case that A or V can be di�erent from zero. In

this case, the Coulomb decay |A(x)| ∼ 1/|x| seems critical. (In [14], there is a counterexample

for n ≥ 3. The case n = 2 is still open.) In an early work of Stefanov [32], estimate (1.2) for

n ≥ 3 was proved, that is,

‖eitHf ‖Lqt (R;Lrx(Rn))
≤ Cn,r,q,H‖f ‖L2(Rn) (1.7)

for all Schrödinger admissible pairs (r, q) under some smallness assumptions on the potentials

A and V . Later, for potentials of almost critical decay |A(x)| . 1/|x|1+ǫ and |V(x)| .

1/|x|2+ǫ (|x| ≫ 1), D’Ancona et al. [7] established (1.7) for all Schrödinger admissible pairs

(r, q) in n ≥ 3, except the endpoint case (n, r, q) = (3, 6, 2), under some technical conditions

on A and V . Also, there have been many related positive results; see, e.g., [17], [11], [6], [24],

[12], [19] and [13]. Despite all these results, there has been no known positive result on the

estimate in case of potentials A of critical decay even in the case V ≡ 0.

Regarding the general case, we state the last result of the paper whose proof is provided in

Section 4.

Theorem 1.3. Let n ≥ 3, A,V ∈ C1
loc(R

n\{0}) and ǫ > 0. Assume that the operator 1A =
−(∇ − iA)2 and H = 1A + V are self-adjoint and positive on L2 and that

‖V−‖K = sup
x∈Rn

∫ |V−(y)|
|x − y|n−2

dy <
πn/2

Ŵ(n2 − 1)
. (1.8)

Assume also that there is a constant Cǫ > 0 such that A and V satisfy the almost critical decay

condition

|A(x)|2 + |V(x)| ≤ Cǫ min

(
1

|x|2−ǫ
,

1

|x|2+ǫ

)
(1.9)
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1470 S. KIM AND Y. KOH

and the Coulomb gauge condition

∇ · A = 0. (1.10)

Lastly, for the trapping component of B as Bτ (x) = (x/|x|) · B(x), assume that
∫ ∞

0
sup
|x|=r

|x|3
∣∣Bτ (x)

∣∣2dr +
∫ ∞

0
sup
|x|=r

|x|2
∣∣(∂rV(x)

)
+
∣∣dr <

1

M
if n = 3, (1.11)

for some M > 0, and that
∥∥∥|x|2Bτ (x)

∥∥∥
2

L∞
+ 2

∥∥∥|x|3
(
∂rV(x)

)
+

∥∥∥
L∞

<
2(n − 1)(n − 3)

3
if n ≥ 4. (1.12)

Only for n = 3, we also assume the boundness of the imaginary power of H:

‖Hiy‖BMO→BMOH ≤ C(1 + |y|)3/2. (1.13)

Then we have

‖eitHf ‖Lqt (R;Lrx(Rn))
≤ Cn,r,q,H,ǫ‖f ‖L2(Rn),

n

r
+

2

q
=

n

2
and q ≥ 2. (1.14)

Note that this result covers the endpoint case (n, r, q) = (3, 6, 2); but the conclusions for

the other cases are the same as in [7]. Here, V± denote the positive and negative parts of V ,

respectively; that is, V+ = max{V , 0} and V− = max{−V , 0}. Also, we say that a function V

is of Kato class if

‖V‖K := sup
x∈Rn

∫ |V(y)|
|x − y|n−2

dy < ∞,

and Ŵ in (1.8) is the gamma function, de�ned by Ŵ(α) =
∫∞
0 xα−1e−xdx. The last condition

(1.13) for n = 3 may seem a bit technical but not be arti�cial. For instance, by Lemma 6.1

in [8], we know that ‖Hiy‖L∞→BMOH ≤ C(1 + |y|)3/2 using only (1.8). Also, there are many

known su�cient conditions to extend such an estimate to BMO → BMO, like the translation

invariant operator [25]. For the de�nition and some basic properties of BMOH space, see

Section 3.

The rest of the paper is organized as follows. In Section 2, we prove Theorems 1.1 and 1.2.

An equivalence of norms regarding H and −1 in R
3 is investigated in Section 3. Finally, in

Section 4, Theorem 1.3 is proved.

2. The case A ≡ 0: proof of Theorems 1.1 and 1.2

In this section, the proof of Theorems 1.1 and 1.2 is provided. Let n ≥ 3, and consider the

purely electric Schrödinger equation in R
n+1:

{
i∂tu + 1u = V(x)u, (x, t) ∈ R

n × R,

u(x, 0) = f (x), f ∈ S .
(2.1)

By Duhamel’s principle, we have a formal solution to problem (2.1) given by

u(x, t) = eitH f (x) = eit1f (x) − i

∫ t

0
ei(t−s)1V(x)eisHfds.
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COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS 1471

From the standard Strichartz estimate (1.3), there holds

‖eitHf ‖Lqt (R;Lrx(Rn))
≤ Cn,r,q‖f ‖L2(Rn) +

∥∥∥
∫ t

0
ei(t−s)1V(x)eisHfds

∥∥∥
L
q
t (R;L

r
x(R

n))

for all Schrödinger admissible pairs (r, q). Thus it is enough to show that

∥∥∥
∫ t

0
ei(t−s)1V(x)eisHfds

∥∥∥
L
q
t (R;L

r
x(R

n))
≤ Cn,r,q,V‖f ‖L2(Rn) (2.2)

for all Schrödinger admissible pairs (r, q).

By the duality argument, estimate (2.2) is equivalent to
∫

R

∫ t

0

〈
ei(t−s)1

(
V(x)eisHf

)
,G(·, t)

〉
L2x
dsdt ≤ C‖f ‖L2(Rn)‖G‖

L
q′
t (R;Lr

′
x (Rn))

.

Now, we consider the le�-hand side of this inequality. Commuting the operator and integra-

tion, we have
∫

R

∫ t

0

〈
ei(t−s)1

(
V(x)eisHf

)
,G(·, t)

〉
L2x
dsdt

=
∫

R

∫ t

0

〈
V(x)eisHf , e−i(t−s)1G(·, t)

〉
L2x
dsdt

=
∫

R

〈
V(x)eisHf ,

∫ ∞

s
e−i(t−s)1G(·, t)dt

〉
L2x
ds.

By Hölder’s inequality, we have
∫

R

〈
V(x)eisHf ,

∫ ∞

s
e−i(t−s)1G(·, t)dt

〉
L2x
ds ≤

∥∥eisHf
∥∥
L2x,s(|V|)

∥∥∥
∫ ∞

s
e−i(t−s)1G(·, t)dt

∥∥∥
L2x,s(|V|)

.

Thanks to [28, Theorem 3], for any n−1
2 < p < n

2 , we have

∥∥eitH f
∥∥
L2x,t(|V|) ≤ Cn‖V‖

1
2

Fp‖f ‖L2(Rn) (2.3)

if condition (1.5) holds for some suitable constant cn. More speci�cally, by Propositions 2.3

and 4.2 in [28], we have

∥∥eitH f
∥∥
L2x,t(|V|) ≤

∥∥eit1f
∥∥
L2x,t(|V|) +

∥∥∥
∫ t

0
ei(t−s)1V(x)eisHfds

∥∥∥
L2x,t(|V|)

≤ C1‖V‖
1
2

Fp‖f ‖L2 + C2‖V‖Fp

∥∥V(x)eitHf
∥∥
L2x,t(|V|−1)

= C1‖V‖
1
2

Fp‖f ‖L2 + C2‖V‖Fp‖eitHf ‖L2x,t(|V|).

Thus, if ‖V‖Fp ≤ 1/(2C2) =: cn, we get

∥∥eitH f
∥∥
L2x,t(|V|) ≤ C1‖V‖

1
2

Fp‖f ‖L2 +
1

2
‖eitHf ‖L2x,t(|V|),

and this implies (2.3) by setting Cn = 2C1. As a result, we can reduce (2.2) to
∥∥∥
∫ ∞

t
ei(t−s)1G(·, s)ds

∥∥∥
L2x,t(|V|)

≤ Cn,r,q,V‖G‖
L
q′
t (R;Lr

′
x (Rn))

. (2.4)
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1472 S. KIM AND Y. KOH

It now remains to establish (2.4). First, from [28, Proposition 2.3] and the duality of

Keel–Tao’s result (1.3), we know that
∥∥∥
∫

R

ei(t−s)1G(·, s)ds
∥∥∥
L2x,t(|V|)

=
∥∥∥eit1

∫

R

e−is1G(·, s)ds
∥∥∥
L2x,t(|V|)

≤ Cn‖V‖
1
2

Fp

∥∥∥
∫

R

e−is1G(·, s)ds
∥∥∥
L2x

≤ Cn,r,q‖V‖
1
2

Fp‖G‖
L
q′
t L

r′
x

(2.5)

for all Schrödinger admissible pairs (r, q). In turn, (2.5) implies

∥∥∥
∫ t

−∞
ei(t−s)1G(·, s)ds

∥∥∥
L2x,t(|V|)

≤ Cn,r,q‖V‖
1
2

Fp‖G‖
L
q′
t (R;Lr

′
x (Rn))

(2.6)

by the Christ–Kiselev lemma [5] for q > 2. Combining (2.5) with (2.6), we directly get (2.4)

for q > 2. Next, for the endpoint case (r, q) = ( 2n
n−2 , 2), we have

∥∥∥
∫ t

−∞
ei(t−s)1G(·, s)ds

∥∥∥
L2x,t(|V|)

≤ ‖V‖
1
2

L
n
2
x

∥∥∥
∫ t

−∞
ei(t−s)1G(·, s)ds

∥∥∥
L2t (R;L

2n
n−2
x (Rn))

≤ Cn‖V‖
1
2

L
n
2
x

‖G‖
L2t (R;L

2n
n+2
x (Rn))

(2.7)

from Hölder’s inequality in x with the inhomogeneous Strichartz estimates by Keel-Tao.

Observe now that (2.7) implies (2.4) when q = 2 under the assumption V ∈ L
n
2
x .

The proof of Theorem 1.1 is now complete.

Now, we will �nd a suitable constant in Theorem 1.2. For this, we re�ne estimate (2.3)

based on an argument in [28]. We recall the Fourier transform in R
n, de�ned by

f̂ (ξ) =
∫

Rn
eix·ξ f (x)dx,

and its basic properties

f (x) =
1

(2π)n

∫

Rn
eix·ξ f̂ (ξ)dξ and ‖f ‖L2(Rn) =

1

(2π)
n
2

∥∥̂f
∥∥
L2(Rn)

.

Thus, we can express eit1f using the polar coordinates with r2 = λ as follows:

eit1f =
1

(2π)n

∫ ∞

0
eitr

2
∫

Sn−1
r

eix·ξ f̂ (ξ)dσr(ξ)dr

=
1

2(2π)n

∫ ∞

0
eitλ

∫

Sn−1√
λ

eix·ξ f̂ (ξ)dσ√
λ
(ξ)λ− 1

2 dλ.

Take F as

F(λ) =
∫

Sn−1√
λ

eix·ξ f̂ (ξ)dσ√
λ
(ξ)λ− 1

2
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COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS 1473

if λ ≥ 0 and F(λ) = 0 if λ < 0. Then, by Plancherel’s theorem in t, we get

∥∥eit1f
∥∥2
L2x,t(|V|) =

2π

4(2π)2n

∫

Rn

(∫

R

|F(λ)|2dλ
)

|V(x)|dx

=
π

2(2π)2n

∫

Rn

(∫ ∞

0

∣∣∣
∫

Sn−1√
λ

eix·ξ f̂ (ξ)dσ√
λ
(ξ)

∣∣∣
2
λ−1dλ

)
|V(x)|dx

=
π

(2π)2n

∫ ∞

0

(∫

Rn

∣∣∣
∫

Sn−1
r

eix·ξ f̂ (ξ)dσr(ξ)

∣∣∣
2
|V(x)|dx

)
r−1dr.

Now, we consider the n = 3 case and apply the result on the best constant of the Stein–Tomas

restriction theorem in R
3 obtained by Foschi [16]. That is,

∥∥f̂dσ
∥∥
L4(R3)

≤ 2π‖f ‖L2(S2)
where

f̂dσ(x) =
∫

Sn−1
e−ix·ξ f (ξ)dσ(ξ).

Interpolating this with a trivial estimate
∥∥f̂dσ

∥∥
L∞(R3)

≤ ‖f ‖L1(S2) ≤
√
4π‖f ‖L2(S2),

we get
∥∥f̂dσ

∥∥
L6(R3)

≤ 21/6(2π)5/6‖f ‖L2(S2).

By Hölder’s inequality, we have
( ∫

R3

∣∣∣
∫

S2
eix·ξ f̂ (ξ)dσ(ξ)

∣∣∣
2
|V(x)|dx

)
≤
∥∥∥
∫

S2
eix·ξ f̂ (ξ)dσ(ξ)

∥∥∥
2

L6
‖V‖L3/2

≤ 21/3(2π)5/3‖V‖L3/2 ‖̂f ‖2L2(S2).

So we get
∥∥eit1f

∥∥2
L2x,t(|V|) ≤

π

(2π)6
21/3(2π)5/3‖V‖L3/2 ‖̂f ‖2L2

=
1

2π1/3
‖V‖L3/2‖f ‖2L2 .

By the argument as in the proof of Theorem 1.1, we have

∥∥eitHf
∥∥
L2x,t(|V|) ≤

∥∥eit1f
∥∥
L2x,t(|V|) +

∥∥∥
∫ t

0
ei(t−s)1V(x)eisHfds

∥∥∥
L2x,t(|V|)

≤
1

√
2π1/6

‖V‖
1
2

L3/2
‖f ‖L2 +

1

2π1/3
‖V‖L3/2

∥∥V(x)eitHf
∥∥
L2x,t(|V|−1)

=
1

√
2π1/6

‖V‖
1
2

L3/2
‖f ‖L2 +

1

2π1/3
‖V‖L3/2‖eitHf ‖L2x,t(|V|).

Thus, if ‖V‖L3/2 < 2π1/3, then
∥∥eitHf

∥∥
L2x,t(|V|) ≤ CV‖f ‖L2 . (2.8)

Using (2.8) instead of (2.3) in that argument, the proof of Theorem 1.2 is complete.
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3. The equivalence of two norms involving H and−1 inRRR3

In this section, we investigate some conditions on H and p with which the equivalence

‖H
1
4 f ‖Lp(R3) ≈ CH,p

∥∥(−1)
1
4 f
∥∥
Lp(R3)

holds. This equivalence was studied in [7] and [4] that are of independent interest. We now

introduce such an equivalence in a form for n = 3, which enables us to include the endpoint

estimate also for that dimension.

Proposition 3.1. Given A ∈ L2loc(R
3;R3) and V : R3 → R measurable, assume that the

operators 1A = −(∇ − iA)2 and H = −1A + V are self-adjoint and positive on L2 and that

(1.13) holds. Moreover, assume that V+ is of Kato class and that A and V satisfy (1.8) and

|A(x)|2 + |∇ · A(x)| + |V(x)| ≤ C0min
( 1

|x|2−ǫ
,

1

|x|2+ǫ

)
(3.1)

for some 0 < ǫ ≤ 2 and C0 > 0. Then the following estimates hold:

‖H
1
4 f ‖Lp ≤ Cǫ,pC0‖(−1)

1
4 f ‖Lp , 1 < p ≤ 6, (3.2)

‖H
1
4 f ‖Lp ≥ Cp‖(−1)

1
4 f ‖Lp ,

4

3
< p < 4. (3.3)

In showing this, we only prove (3.2) as estimate (3.3) is the same as [7, Theorem 1.2].When

1 < p < 6, estimate (3.2) easily follows from the Sobolev embedding theorem. However, to

extend the range of p up to 6, we need a precise estimate which depends on ǫ in (3.1). Toward

this, we introduce a weighted Sobolev inequality as below.

Lemma 3.2 (Theorem 1(B) in [29]). Suppose 0 < α < n, 1 < p < q < ∞ and v1(x) and

v2(x) are nonnegative measurable functions on R
n. Let v1(x) and v2(x)

1−p′
satisfy the reverse

doubling condition: there exist δ, ǫ ∈ (0, 1) such that
∫

δQ
v1(x)dx ≤ ǫ

∫

Q
v1(x)dx for all cubes Q ⊂ R

n.

Then the inequality

(∫

Rn
|f (x)|qv1(x)dx

) 1
q

≤ C

(∫

Rn

∣∣(−1)α/2f (x)
∣∣pv2(x)dx

) 1
p

holds if and only if

|Q|
α
n−1

( ∫

Q
v1(x)dx

) 1
q
( ∫

Q
v2(x)

1−p′
dx
) 1

p′ ≤ C for all cubes Q ⊂ R
n.

From Lemma 3.2, we obtain a weighted estimate as follows.

Lemma 3.3. Let f be a C∞
0 (R3) function, and suppose that a nonnegative weight function w

satis�es

w(x) ≤ min
( 1

|x|2−ǫ
,

1

|x|2+ǫ

)
(3.4)
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for some 0 < ǫ ≤ 2. Then, for any 1 < p ≤ 3
2 , we have

‖fw‖Lp ≤ Cǫ,p‖1f ‖Lp .

Proof. For all 1 < p < 3
2 , we directly get
∥∥∥ 1

|x|2
f
∥∥∥
Lp

≤ C
∥∥∥ 1

|x|2
∥∥∥
L
3
2 ,∞

‖f ‖
L

3p
3−2p ,p

≤ C‖1f ‖Lp (3.5)

from Hölder’s inequality in Lorentz spaces and the Sobolev embedding theorem. For p = 3
2 ,

by Hölder’s inequality, we get

(∫

R3
|f (x)|

3
2w(x)

3
2 dx

) 2
3

≤
(∫

R3
|f (x)|qw(x)(1−θ)qdx

) 1
q
(∫

R3
w(x)

3q
2q−3 θ

dx

) 2q−3
3q

for any 3
2 < q < ∞ and 0 < θ < 1. Taking θ = 1 − 3

2q , we have

(∫

R3
|f (x)|

3
2w(x)

3
2 dx

) 2
3

≤ Cǫ,q

(∫

R3
|f (x)|qw(x)

3
2 dx

) 1
q

because of (3.4). Thus, using Lemma 3.2 with α = 2, (p, q) = ( 32 , q), v1(x) = w(x)
3
2 and

v2(x) ≡ 1, we have

(∫

R3
|f (x)|

3
2w(x)

3
2 dx

) 2
3

≤ Cǫ,q

(∫

R3
|1f (x)|

3
2w(x)

3
2 dx

) 2
3

. (3.6)

Combining (3.5) and (3.6), the proof is complete.

Finally, we prove Proposition 3.1. We use Stein’s interpolation theorem to the analytic

family of operators Tz = Hz · (−1)−z, where Hz and (−1)−z are de�ned by the spectral

theory. Denoting z = x + iy, we can decompose

Tz = Tx+iy = HiyHx(−1)−x(−1)−iy.

In fact, the operators Hiy and (−1)−iy are bounded according to the following result.

Lemma 3.4 (Proposition 2.2 in [7]). Consider the self-adjoint and positive operators−1A and

H = −1A + V on L2. Assume that A ∈ L2loc(R
3;R3) and that the positive and negative parts

V± of V satisfy: V+ is of Kato class and

‖V−‖K <
π3/2

Ŵ(1/2)
.

Then for all y ∈ R, the imaginary powers Hiy satisfy the (1, 1) weak type estimate

‖Hiy‖L1→L1,∞ ≤ C(1 + |y|)
3
2 .

Lemma 3.4 follows from the pointwise estimate for the heat kernel pt(x, y) of the operator

e−tH as

∣∣pt(x, y)
∣∣ ≤

(2t)−3/2

π3/2 − Ŵ(1/2)‖V−‖K
e−

|x−y|2
8t .

Regarding this estimate, one may refer to some references [4, 9, 30, 31].
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1476 S. KIM AND Y. KOH

By Lemma 3.4, we get

‖Tiyf ‖p ≤ C(1 + |y|)3‖f ‖p for all 1 < p < ∞. (3.7)

Then by (1.13), we have

‖Tiyf ‖BMOH :=
∥∥M#

H

(
Hiy(−1)−iyf

)∥∥
L∞

≤ C(1 + |y|)
3
2
∥∥(−1)−iyf

∥∥
BMO

≤ C(1 + |y|)3‖f ‖L∞ , (3.8)

where

M#
H f (x) := sup

r>0

1

|B(x, r)|

∫

B(x,r)

∣∣f (y) − e−r2H f (y)
∣∣dy < ∞.

Next, consider the operator T1+iy. If

‖H(−1)−1f ‖Lp ≤ C‖f ‖Lp for all 1 < p ≤
3

2
, (3.9)

then by (3.7), we get

‖T1+iyf ‖Lp ≤ C‖f ‖Lp for all 1 < p ≤
3

2
. (3.10)

Taking T̃zf := M#
H

(
Tzf

)
and applying (3.10) with a basic property1:

‖M#
H f ‖Lp ≤ C‖f ‖Lp for all 1 < p ≤ ∞, (3.11)

we have

‖T̃1+iyf ‖Lp ≤ C‖f ‖Lp for all 1 < p ≤
3

2
. (3.12)

So, applying Stein’s interpolation theorem to (3.8) and (3.12), we obtain

‖T̃1/4f ‖Lp ≤ C‖f ‖Lp for all 1 < p ≤ 6,

and using (3.11) again, we have

‖H1/4f ‖Lp ≤ C‖(−1)1/4f ‖Lp for all 1 < p ≤ 6.

Now, we handle the remaining part (3.9); that is, we wish to establish the estimate

‖Hf ‖Lp ≤ C‖1f ‖Lp .

For a Schwartz function f , we can write

Hf = −1f + 2iA · ∇f + (|A|2 + i∇ · A + V)f . (3.13)

From Hölder’s inequality in Lorentz spaces and the Sobolev embedding theorem, we get

‖A · ∇f ‖Lr ≤ C‖A‖L3,∞‖∇f ‖
L

3r
3−r ,r

≤ C‖A‖L3,∞‖1f ‖Lr

for all 1 < r < 3. On the other hand, applying Lemma 3.3 to (3.1), we get
∥∥(|A|2 + i∇ · A + V)f

∥∥
Lr

≤ CC0‖1f ‖Lr

1Some properties of the BMOL space can be found in [10].
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for all 1 < r ≤ 3
2 . Thus we have

‖Hf ‖Lr ≤ C‖1f ‖Lr for all 1 < r ≤
3

2
,

and this implies Proposition 3.1.

4. Proof of Theorem 1.3

In this �nal section, we prove Theorem 1.3. This part follows an argument in [7]. Let u be a

solution to problem (1.1) of the magnetic Schrödinger equation in R
n+1. By (3.13), we can

expand H in (1.1):

H = −1 + 2iA · ∇ + |A|2 + i∇ · A + V .

Thus, by Duhamel’s principle and the Coulomb gauge condition (1.10), we have a formal

solution to (1.1) given by

u(x, t) = eitH f (x) = eit1f (x) − i

∫ t

0
ei(t−s)1R(x,∇)eisHfds, (4.1)

where

R(x,∇) = 2iA · ∇A − |A|2 + V .

From [27] and [22] (see also (3.4) in [7]), it follows that for every admissible pair (r, q),

∥∥∥|∇|
1
2

∫ t

0
ei(t−s)1F(·, s)ds

∥∥∥
L
q
t L

r
x

≤ Cn,r,q

∑

j∈Z
2j/2‖χCjF‖L2x,t , (4.2)

where Cj = {x : 2j ≤ |x| ≤ 2j+1} and χCj is the characteristic function of the set Cj. Then,

from (4.1), (1.3) and (4.2), we know that

∥∥|∇|
1
2 u
∥∥
L
q
t L

r
x

≤
∥∥|∇|

1
2 eit1f

∥∥
L
q
t L

r
x
+
∥∥∥|∇|

1
2

∫ t

0
ei(t−s)1R(x,∇)eisHfds

∥∥∥
L
q
t L

r
x

≤ Cn,r,q

∥∥|∇|1/2f
∥∥
L2x

+ Cn,r,q

∑

j∈Z
2j/2

∥∥∥χCjR(x,∇)eitHf
∥∥∥
L2x,t

.

For the second term in the far right-hand side, we get
∥∥∥χCjR(x,∇)eitHf

∥∥∥
L2x,t

≤ 2
∥∥∥χCjA · ∇Ae

itH f
∥∥∥
L2x,t

+
∥∥∥χCj

(
|A|2 + |V|

)
eitH f

∥∥∥
L2x,t

.

Next, we will use a known result in [15], which is a smoothing estimate for the magnetic

Schrödinger equation.

Lemma 4.1 (Theorems 1.9 and 1.10 in [15]). Assume n ≥ 3, A and V satisfy conditions (1.10),

(1.11), and (1.12). Then, for any solution u to (1.1) with f ∈ L2 and −1Af ∈ L2, the following

estimate holds:

sup
R>0

1

R

∫ ∞

0

∫

|x|≤R
|∇Au|2dxdt + sup

R>0

1

R2

∫ ∞

0

∫

|x|=R
|u|2dσ(x)dt

≤ CA‖(−1A)
1
4 f ‖2L2 .
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1478 S. KIM AND Y. KOH

From (1.9) with Lemma 4.1, we have
∑

j∈Z
2j/2

∥∥∥χCjA · ∇Ae
itHf

∥∥∥
L2x,t

≤
∑

j∈Z
2j
(
sup
x∈Cj

|A|
)( 1

2j+1

∫ ∞

0

∫

|x|≤2j+1
|∇Au|2dxdt

) 1
2

≤
(∑

j∈Z
2j sup

x∈Cj

|A|
)(

sup
R>0

1

R

∫ ∞

0

∫

|x|≤R
|∇Au|2dxdt

) 1
2

≤ CA,ǫ

∥∥(−1A)
1
4 f
∥∥
L2x

and
∑

j∈Z
2j/2

∥∥∥χCj

(
|A|2 + |V|

)
eitHf

∥∥∥
L2x,t

≤
∑

j∈Z
2j/2

(
sup
x∈Cj

(
|A|2 + |V|

))( ∫ 2j+1

2j
r2
∫ ∞

0

1

r2

∫

|x|=r
|u|2dσr(x)dtdr

) 1
2

≤
(∑

j∈Z
22j sup

x∈Cj

(
|A|2 + |V|

))(
sup
R>0

1

R2

∫ ∞

0

∫

|x|=R
|u|2dσR(x)dt

) 1
2

≤ CA,V ,ǫ

∥∥(−1A)
1
4 f
∥∥
L2x
.

That is,
∥∥|∇|

1
2 eitHf

∥∥
L
q
t L

r
x
≤ Cn,r,q

∥∥|∇|1/2f
∥∥
L2x

+ Cn,r,q,A,V ,ǫ

∥∥(−1A)
1
4 f
∥∥
L2x
.

First, consider the case n = 3. By (1.9), estimate (3.2) in Proposition 3.1 holds for all

1 < p ≤ 6. (Here, H = −1A + V .) Then by (3.3) in Proposition 3.1, we get
∥∥H 1

4 eitH f
∥∥
L
q
t (R;L

r
x(R

3))
≤ C

∥∥|∇|
1
2 eitHf

∥∥
L
q
t (R;L

r
x(R

3))

≤ C
∥∥|∇|

1
2 f
∥∥
L2x(R

3)
+ C

∥∥(−1A)
1
4 f
∥∥
L2x(R

3)

≤ C
∥∥H 1

4 f
∥∥
L2x(R

3)
(4.3)

for all admissible pairs (r, q). (It clearly includes the endpoint case (n, r, q) = (3, 6, 2).)

Next, for the case n ≥ 4, we already know that (3.2) holds for 1 < p < 2n and that (3.3) is

valid for 4
3 < p < 4 under the same conditions on A and V (see [7, Theorem 1.2]). Thus, we

can easily get the same bound as (4.3) for all admissible pairs (r, q).

Since the operators H
1
4 and eitH commutes, we get

∥∥eitHf
∥∥
L
q
t (R;L

r
x(R

n))
≤ C

∥∥f
∥∥
L2x(R

n)

from (4.3), and this completes the proof.
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