

Communications in Partial Differential Equations

ISSN: 0360-5302 (Print) 1532-4133 (Online) Journal homepage: http://www.tandfonline.com/loi/lpde20

Strichartz estimates for the magnetic Schrödinger equation with potentials V of critical decay

Seonghak Kim & Youngwoo Koh

To cite this article: Seonghak Kim & Youngwoo Koh (2017) Strichartz estimates for the magnetic Schrödinger equation with potentials V of critical decay, Communications in Partial Differential Equations, 42:9, 1467-1480, DOI: 10.1080/03605302.2017.1377229

To link to this article: http://dx.doi.org/10.1080/03605302.2017.1377229

	Accepted author version posted online: 08 Sep 2017. Published online: 08 Sep 2017.
	Submit your article to this journal $oldsymbol{oldsymbol{\mathcal{C}}}$
hh	Article views: 49
a`	View related articles 🗗
CrossMark	View Crossmark data 🗗

Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=lpde20

Strichartz estimates for the magnetic Schrödinger equation with potentials *V* of critical decay

Seonghak Kim^a and Youngwoo Koh^b

^aDepartment of Mathematics, Kyungpook National University, Daegu, Republic of Korea; ^bDepartment of Mathematics Education, Kongju National University, Kongju, Republic of Korea

ABSTRACT

We study the Strichartz estimates for the magnetic Schrödinger equation in dimension $n \ge 3$. More specifically, for all Schrödinger admissible pairs (r, q), we establish the estimate

$$\|e^{itH}f\|_{L^q_t(\mathbb{R};L^r_x(\mathbb{R}^n))} \leq C_{n,r,q,H}\|f\|_{L^2(\mathbb{R}^n)}$$

when the operator $H=-\Delta_A+V$ satisfies suitable conditions. In the purely electric case $A\equiv 0$, we extend the class of potentials V to the Fefferman–Phong class. In doing so, we apply a weighted estimate for the Schrödinger equation developed by Ruiz and Vega. Moreover, for the endpoint estimate of the magnetic case in \mathbb{R}^3 , we investigate an equivalence

$$\|H^{\frac{1}{4}}f\|_{L^{r}(\mathbb{R}^{3})}\approx C_{H,r}\big\|(-\Delta)^{\frac{1}{4}}f\big\|_{L^{r}(\mathbb{R}^{3})}$$

and find sufficient conditions on H and r for which the equivalence holds.

ARTICLE HISTORY

Received 17 April 2016 Accepted 29 March 2017

KEYWORDS

Fefferman-Phong class; magnetic Schrödinger equation; Strichartz estimates

2010 MATHEMATICS SUBJECT CLASSIFICATION Primary: 35Q41, 46E35

1. Introduction

Consider the Cauchy problem of the magnetic Schrödinger equation in \mathbb{R}^{n+1} $(n \ge 3)$:

$$\begin{cases} i\partial_t u - Hu = 0, & (x,t) \in \mathbb{R}^n \times \mathbb{R}, \\ u(x,0) = f(x), & f \in \mathcal{S}. \end{cases}$$
 (1.1)

Here, S is the Schwartz class, and H is the electromagnetic Schrödinger operator

$$H = -\nabla_A^2 + V(x), \quad \nabla_A = \nabla - iA(x),$$

where $A = (A^1, A^2, \dots, A^n) : \mathbb{R}^n \to \mathbb{R}^n$ and $V : \mathbb{R}^n \to \mathbb{R}$. The magnetic field B is defined by

$$B = DA - (DA)^T \in \mathcal{M}_{n \times n},$$

where $(DA)_{ij} = \partial_{x_i} A^j$, $(DA)^T$ denotes the transpose of DA, and $\mathcal{M}_{n \times n}$ is the space of $n \times n$ real matrices. In dimension n = 3, B is determined by the cross product with the vector field curl A:

$$Bv = \text{curl}A \times v \quad (v \in \mathbb{R}^3).$$

In this paper, we consider the Strichartz type estimate

$$||u||_{L_{t}^{q}(\mathbb{R};L_{x}^{r}(\mathbb{R}^{n}))} \leq C_{n,r,q,H}||f||_{L^{2}(\mathbb{R}^{n})}, \tag{1.2}$$

where $u = e^{itH}f$ is the solution to problem (1.1) with solution operator e^{itH} , and study some conditions on A, V and pairs (r, q) for which the estimate holds.

For the unperturbed case of (1.1) that $A \equiv 0$ and $V \equiv 0$, Strichartz [33] proved the inequality

$$\|e^{it\Delta}f\|_{L^{\frac{2(n+2)}{n}}(\mathbb{R}^{n+1})} \le C_n \|f\|_{L^2(\mathbb{R}^n)},$$

where $e^{it\Delta}$ is the solution operator given by

$$e^{it\Delta}f(x) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} e^{ix\cdot\xi + it|\xi|^2} \widehat{f}(\xi) d\xi.$$

Later, Keel and Tao [23] generalized this inequality to the following:

$$\|e^{it\Delta}f\|_{L^{q}_{t}(\mathbb{R};L^{r}_{x}(\mathbb{R}^{n}))} \le C_{n,r,q}\|f\|_{L^{2}(\mathbb{R}^{n})} \tag{1.3}$$

holds if and only if (r, q) is a Schrödinger admissible pair; that is, $r, q \ge 2$, $(r, q) \ne (\infty, 2)$, and $\frac{n}{r} + \frac{2}{a} = \frac{n}{2}$.

In the purely electric case of (1.1) that $A \equiv 0$, the decay $|V(x)| \sim 1/|x|^2$ has been known to be critical for the validity of the Strichartz estimate. It was shown by Goldberg et al. [21] that for each $\epsilon > 0$, there is a counterexample of $V = V_{\epsilon}$ with $|V(x)| \sim |x|^{-2+\epsilon}$ for $|x| \gg 1$ such that the estimate fails to hold. In a positive direction, Rodnianski and Schlag [26] proved

$$||u||_{L_t^q(\mathbb{R};L_x^r(\mathbb{R}^n))} \le C_{n,r,q,V}||f||_{L^2(\mathbb{R}^n)}$$
(1.4)

for non-endpoint admissible pairs (r,q) (i.e., q>2) with almost critical decay $|V(x)|\lesssim$ $1/(1+|x|)^{2+\epsilon}$. However, Burq et al. [3] established (1.4) for critical decay $|V(x)| \lesssim 1/|x|^2$ with some technical conditions on V but the endpoint case included. Other than these, there have been many related positive results; see, e.g., [20], [18], [1], [15] and [2].

In regard to the purely electric case, the following is the first main result of this paper whose proof is given in Section 2.

Theorem 1.1. Let $n \ge 3$ and $A \equiv 0$. Then there exists a constant $c_n > 0$, depending only on n, such that for any $V \in \mathcal{F}^p$ $(\frac{n-1}{2} satisfying$

$$||V||_{\mathcal{F}^p} \le c_n, \tag{1.5}$$

estimate (1.4) holds for all $\frac{n}{r} + \frac{2}{q} = \frac{n}{2}$ and q > 2. Moreover, if $V \in L^{\frac{n}{2}}$ in addition, then (1.4) holds for the endpoint case $(r,q) = (\frac{2n}{n-2}, 2)$.

Here, \mathcal{F}^p is the Fefferman–Phong class with norm

$$||V||_{\mathcal{F}^p} = \sup_{r>0, x_0 \in \mathbb{R}^n} r^2 \left(\frac{1}{r^n} \int_{B_r(x_0)} |V(x)|^p dx\right)^{\frac{1}{p}} < \infty,$$

which is closed under translation. From the definition of \mathcal{F}^p , we directly get $L^{\frac{n}{2},\infty} \subset \mathcal{F}^p$ for all $p < \frac{n}{2}$. Thus the class \mathcal{F}^p $(p < \frac{n}{2})$ clearly contains the potentials of critical decay $|V(x)| \lesssim 1/|x|^2$. Moreover, \mathcal{F}^p $(p < \frac{n}{2})$ is strictly larger than $L^{\frac{n}{2},\infty}$. For instance, if the potential function

$$V(x) = \phi\left(\frac{x}{|x|}\right)|x|^{-2}, \quad \phi \in L^p(S^{n-1}), \quad \frac{n-1}{2}$$

then *V* need not belong to $L^{\frac{n}{2},\infty}$, but $V \in \mathcal{F}^p$.

According to Theorem 1.1, for the non-endpoint case, we do not need any other conditions on V but its quantitative bound (1.5), so that we can extend and much simplify the known results for potentials $|V(x)| \sim 1/|x|^2$ (e.g., $\phi \in L^{\infty}(S^{n-1})$ in (1.6)), mentioned above. To prove this, we use a weighted estimate developed by Ruiz and Vega [28]. We remark that our proof follows an approach different from those used in the previous works.

Unfortunately, for the endpoint case, we need an additional condition that $V \in L^{\frac{n}{2}}$. Although $L^{\frac{n}{2}}$ dose not contain the potentials of critical decay, it still includes those of *almost* critical decay $|V(x)| \lesssim \phi(\frac{x}{|x|}) \min(|x|^{-(2+\epsilon)}, |x|^{-(2-\epsilon)}), \phi \in L^{\frac{n}{2}}(S^{n-1}).$

In case of dimension n=3, we can find a specific bound for V, which plays the role of c_n in Theorem 1.1. We state this as the second result of the paper.

Theorem 1.2. If n = 3, $A \equiv 0$ and $||V||_{L^{3/2}} < 2\pi^{1/3}$, then estimate (1.4) holds for all $\frac{3}{r} + \frac{2}{q} = \frac{3}{2}$ and $q \geq 2$.

To prove this, we use the best constant of the Stein-Tomas restriction theorem in \mathbb{R}^3 , obtained by Foschi [16], and apply it to an argument of Ruiz and Vega [28].

Next, we consider the general (magnetic) case that A or V can be different from zero. In this case, the Coulomb decay $|A(x)| \sim 1/|x|$ seems critical. (In [14], there is a counterexample for $n \ge 3$. The case n = 2 is still open.) In an early work of Stefanov [32], estimate (1.2) for $n \ge 3$ was proved, that is,

$$\|e^{itH}f\|_{L^{q}_{t}(\mathbb{R};L^{r}_{x}(\mathbb{R}^{n}))} \le C_{n,r,q,H}\|f\|_{L^{2}(\mathbb{R}^{n})}$$
(1.7)

for all Schrödinger admissible pairs (r, q) under some smallness assumptions on the potentials A and V. Later, for potentials of almost critical decay $|A(x)| \lesssim 1/|x|^{1+\epsilon}$ and $|V(x)| \lesssim$ $1/|x|^{2+\epsilon}$ ($|x|\gg 1$), D'Ancona et al. [7] established (1.7) for all Schrödinger admissible pairs (r,q) in $n \ge 3$, except the endpoint case (n,r,q) = (3,6,2), under some technical conditions on A and V. Also, there have been many related positive results; see, e.g., [17], [11], [6], [24], [12], [19] and [13]. Despite all these results, there has been no known positive result on the estimate in case of potentials A of critical decay even in the case $V \equiv 0$.

Regarding the general case, we state the last result of the paper whose proof is provided in Section 4.

Theorem 1.3. Let $n \geq 3$, $A, V \in C^1_{loc}(\mathbb{R}^n \setminus \{0\})$ and $\epsilon > 0$. Assume that the operator $\Delta_A =$ $-(\nabla - iA)^2$ and $H = \Delta_A + V$ are self-adjoint and positive on L^2 and that

$$\|V_{-}\|_{K} = \sup_{x \in \mathbb{R}^{n}} \int \frac{|V_{-}(y)|}{|x - y|^{n - 2}} dy < \frac{\pi^{n/2}}{\Gamma(\frac{n}{2} - 1)}.$$
 (1.8)

Assume also that there is a constant $C_{\epsilon} > 0$ such that A and V satisfy the almost critical decay condition

$$|A(x)|^2 + |V(x)| \le C_{\epsilon} \min\left(\frac{1}{|x|^{2-\epsilon}}, \frac{1}{|x|^{2+\epsilon}}\right)$$
 (1.9)

and the Coulomb gauge condition

$$\nabla \cdot A = 0. \tag{1.10}$$

Lastly, for the trapping component of B as $B_{\tau}(x) = (x/|x|) \cdot B(x)$, assume that

$$\int_{0}^{\infty} \sup_{|x|=r} |x|^{3} |B_{\tau}(x)|^{2} dr + \int_{0}^{\infty} \sup_{|x|=r} |x|^{2} |(\partial_{r} V(x))_{+}| dr < \frac{1}{M} \quad \text{if } n = 3, \tag{1.11}$$

for some M > 0, and that

$$\left\| |x|^2 B_{\tau}(x) \right\|_{L^{\infty}}^2 + 2 \left\| |x|^3 \left(\partial_r V(x) \right)_+ \right\|_{L^{\infty}} < \frac{2(n-1)(n-3)}{3} \quad \text{if } n \ge 4. \tag{1.12}$$

Only for n = 3, we also assume the boundness of the imaginary power of H:

$$||H^{iy}||_{BMO \to BMO_H} \le C(1+|y|)^{3/2}.$$
 (1.13)

Then we have

$$\|e^{itH}f\|_{L^q_t(\mathbb{R};L^r_x(\mathbb{R}^n))} \le C_{n,r,q,H,\epsilon}\|f\|_{L^2(\mathbb{R}^n)}, \quad \frac{n}{r} + \frac{2}{q} = \frac{n}{2} \quad and \quad q \ge 2.$$
 (1.14)

Note that this result covers the endpoint case (n, r, q) = (3, 6, 2); but the conclusions for the other cases are the same as in [7]. Here, V_{\pm} denote the positive and negative parts of V, respectively; that is, $V_+ = \max\{V, 0\}$ and $V_- = \max\{-V, 0\}$. Also, we say that a function V is of Kato class if

$$||V||_K := \sup_{x \in \mathbb{R}^n} \int \frac{|V(y)|}{|x - y|^{n-2}} dy < \infty,$$

and Γ in (1.8) is the gamma function, defined by $\Gamma(\alpha) = \int_0^\infty x^{\alpha-1} e^{-x} dx$. The last condition (1.13) for n = 3 may seem a bit technical but not be artificial. For instance, by Lemma 6.1 in [8], we know that $||H^{iy}||_{L^{\infty}\to BMO_H} \leq C(1+|y|)^{3/2}$ using only (1.8). Also, there are many known sufficient conditions to extend such an estimate to $BMO \rightarrow BMO$, like the translation invariant operator [25]. For the definition and some basic properties of BMO_H space, see Section 3.

The rest of the paper is organized as follows. In Section 2, we prove Theorems 1.1 and 1.2. An equivalence of norms regarding H and $-\Delta$ in \mathbb{R}^3 is investigated in Section 3. Finally, in Section 4, Theorem 1.3 is proved.

2. The case $A \equiv 0$: proof of Theorems 1.1 and 1.2

In this section, the proof of Theorems 1.1 and 1.2 is provided. Let $n \geq 3$, and consider the purely electric Schrödinger equation in \mathbb{R}^{n+1} :

$$\begin{cases} i\partial_t u + \Delta u = V(x)u, & (x,t) \in \mathbb{R}^n \times \mathbb{R}, \\ u(x,0) = f(x), & f \in \mathcal{S}. \end{cases}$$
 (2.1)

By Duhamel's principle, we have a formal solution to problem (2.1) given by

$$u(x,t) = e^{itH} f(x) = e^{it\Delta} f(x) - i \int_0^t e^{i(t-s)\Delta} V(x) e^{isH} f ds.$$

From the standard Strichartz estimate (1.3), there holds

$$\|e^{itH}f\|_{L^{q}_{t}(\mathbb{R};L^{r}_{x}(\mathbb{R}^{n}))} \leq C_{n,r,q}\|f\|_{L^{2}(\mathbb{R}^{n})} + \left\| \int_{0}^{t} e^{i(t-s)\Delta}V(x)e^{isH}fds \right\|_{L^{q}_{t}(\mathbb{R};L^{r}_{x}(\mathbb{R}^{n}))}$$

for all Schrödinger admissible pairs (r, q). Thus it is enough to show that

$$\left\| \int_{0}^{t} e^{i(t-s)\Delta} V(x) e^{isH} f ds \right\|_{L_{t}^{q}(\mathbb{R}; L_{x}^{r}(\mathbb{R}^{n}))} \leq C_{n,r,q,V} \|f\|_{L^{2}(\mathbb{R}^{n})}$$
 (2.2)

for all Schrödinger admissible pairs (r, q).

By the duality argument, estimate (2.2) is equivalent to

$$\int_{\mathbb{R}} \int_{0}^{t} \left\langle e^{i(t-s)\Delta} \left(V(x)e^{isH}f \right), G(\cdot,t) \right\rangle_{L_{x}^{2}} ds dt \leq C \|f\|_{L^{2}(\mathbb{R}^{n})} \|G\|_{L_{t}^{q'}(\mathbb{R}; L_{x}^{r'}(\mathbb{R}^{n}))}.$$

Now, we consider the left-hand side of this inequality. Commuting the operator and integration, we have

$$\begin{split} &\int_{\mathbb{R}} \int_{0}^{t} \left\langle e^{i(t-s)\Delta} \left(V(x) e^{isH} f \right), G(\cdot, t) \right\rangle_{L_{x}^{2}} ds dt \\ &= \int_{\mathbb{R}} \int_{0}^{t} \left\langle V(x) e^{isH} f, e^{-i(t-s)\Delta} G(\cdot, t) \right\rangle_{L_{x}^{2}} ds dt \\ &= \int_{\mathbb{R}} \left\langle V(x) e^{isH} f, \int_{s}^{\infty} e^{-i(t-s)\Delta} G(\cdot, t) dt \right\rangle_{L_{x}^{2}} ds. \end{split}$$

By Hölder's inequality, we have

$$\int_{\mathbb{R}} \left\langle V(x)e^{isH}f, \int_{s}^{\infty} e^{-i(t-s)\Delta}G(\cdot,t)dt \right\rangle_{L_{x}^{2}}ds \leq \left\| e^{isH}f \right\|_{L_{x,s}^{2}(|V|)} \left\| \int_{s}^{\infty} e^{-i(t-s)\Delta}G(\cdot,t)dt \right\|_{L_{x,s}^{2}(|V|)}.$$

Thanks to [28, Theorem 3], for any $\frac{n-1}{2} , we have$

$$\|e^{itH}f\|_{L^{2}_{x,t}(|V|)} \le C_{n}\|V\|_{\mathcal{F}^{p}}^{\frac{1}{2}}\|f\|_{L^{2}(\mathbb{R}^{n})}$$
(2.3)

if condition (1.5) holds for some suitable constant c_n . More specifically, by Propositions 2.3 and 4.2 in [28], we have

$$\begin{aligned} \|e^{itH}f\|_{L^{2}_{x,t}(|V|)} &\leq \|e^{it\Delta}f\|_{L^{2}_{x,t}(|V|)} + \|\int_{0}^{t} e^{i(t-s)\Delta}V(x)e^{isH}fds\|_{L^{2}_{x,t}(|V|)} \\ &\leq C_{1}\|V\|_{\mathcal{F}^{p}}^{\frac{1}{2}}\|f\|_{L^{2}} + C_{2}\|V\|_{\mathcal{F}^{p}}\|V(x)e^{itH}f\|_{L^{2}_{x,t}(|V|-1)} \\ &= C_{1}\|V\|_{\mathcal{F}^{p}}^{\frac{1}{2}}\|f\|_{L^{2}} + C_{2}\|V\|_{\mathcal{F}^{p}}\|e^{itH}f\|_{L^{2}_{x,t}(|V|)}. \end{aligned}$$

Thus, if $||V||_{\mathcal{F}^p} \le 1/(2C_2) =: c_n$, we get

$$\|e^{itH}f\|_{L^2_{x,t}(|V|)} \le C_1 \|V\|_{\mathcal{F}^p}^{\frac{1}{2}} \|f\|_{L^2} + \frac{1}{2} \|e^{itH}f\|_{L^2_{x,t}(|V|)},$$

and this implies (2.3) by setting $C_n = 2C_1$. As a result, we can reduce (2.2) to

$$\left\| \int_{t}^{\infty} e^{i(t-s)\Delta} G(\cdot, s) ds \right\|_{L^{2}_{x,t}(|V|)} \le C_{n,r,q,V} \|G\|_{L^{q'}_{t}(\mathbb{R}; L^{r'}_{x}(\mathbb{R}^{n}))}. \tag{2.4}$$

It now remains to establish (2.4). First, from [28, Proposition 2.3] and the duality of Keel-Tao's result (1.3), we know that

$$\left\| \int_{\mathbb{R}} e^{i(t-s)\Delta} G(\cdot, s) ds \right\|_{L^{2}_{x,t}(|V|)} = \left\| e^{it\Delta} \int_{\mathbb{R}} e^{-is\Delta} G(\cdot, s) ds \right\|_{L^{2}_{x,t}(|V|)}$$

$$\leq C_{n} \|V\|_{\mathcal{F}^{p}}^{\frac{1}{2}} \left\| \int_{\mathbb{R}} e^{-is\Delta} G(\cdot, s) ds \right\|_{L^{2}_{x}}$$

$$\leq C_{n,r,q} \|V\|_{\mathcal{F}^{p}}^{\frac{1}{2}} \|G\|_{L^{q'}_{L^{r'}}}$$

$$(2.5)$$

for all Schrödinger admissible pairs (r, q). In turn, (2.5) implies

$$\left\| \int_{-\infty}^{t} e^{i(t-s)\Delta} G(\cdot, s) ds \right\|_{L^{2}_{x,t}(|V|)} \le C_{n,r,q} \|V\|_{\mathcal{F}^{p}}^{\frac{1}{2}} \|G\|_{L^{q'}_{t}(\mathbb{R}; L^{r'}_{x}(\mathbb{R}^{n}))}$$
(2.6)

by the Christ-Kiselev lemma [5] for q > 2. Combining (2.5) with (2.6), we directly get (2.4) for q > 2. Next, for the endpoint case $(r, q) = (\frac{2n}{n-2}, 2)$, we have

$$\left\| \int_{-\infty}^{t} e^{i(t-s)\Delta} G(\cdot, s) ds \right\|_{L^{2}_{x,t}(|V|)} \leq \|V\|_{L^{\frac{n}{2}}_{x}}^{\frac{1}{2}} \left\| \int_{-\infty}^{t} e^{i(t-s)\Delta} G(\cdot, s) ds \right\|_{L^{2}_{t}(\mathbb{R}; L^{\frac{2n}{n-2}}_{x}(\mathbb{R}^{n}))}$$

$$\leq C_{n} \|V\|_{L^{\frac{1}{2}}_{x}}^{\frac{1}{2}} \|G\|_{L^{2}_{t}(\mathbb{R}; L^{\frac{2n}{n+2}}_{x}(\mathbb{R}^{n}))}$$

$$(2.7)$$

from Hölder's inequality in x with the inhomogeneous Strichartz estimates by Keel-Tao. Observe now that (2.7) implies (2.4) when q=2 under the assumption $V \in L_x^{\frac{n}{2}}$.

The proof of Theorem 1.1 is now complete.

Now, we will find a suitable constant in Theorem 1.2. For this, we refine estimate (2.3) based on an argument in [28]. We recall the Fourier transform in \mathbb{R}^n , defined by

$$\widehat{f}(\xi) = \int_{\mathbb{R}^n} e^{ix \cdot \xi} f(x) dx,$$

and its basic properties

$$f(x) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} e^{ix \cdot \xi} \widehat{f}(\xi) d\xi \quad \text{and} \quad \|f\|_{L^2(\mathbb{R}^n)} = \frac{1}{(2\pi)^{\frac{n}{2}}} \|\widehat{f}\|_{L^2(\mathbb{R}^n)}.$$

Thus, we can express $e^{it\Delta}f$ using the polar coordinates with $r^2 = \lambda$ as follows:

$$\begin{split} e^{it\Delta}f &= \frac{1}{(2\pi)^n} \int_0^\infty e^{itr^2} \int_{S_r^{n-1}} e^{ix\cdot\xi} \widehat{f}(\xi) d\sigma_r(\xi) dr \\ &= \frac{1}{2(2\pi)^n} \int_0^\infty e^{it\lambda} \int_{S_{\sqrt{\lambda}}^{n-1}} e^{ix\cdot\xi} \widehat{f}(\xi) d\sigma_{\sqrt{\lambda}}(\xi) \lambda^{-\frac{1}{2}} d\lambda. \end{split}$$

Take F as

$$F(\lambda) = \int_{S_{\sqrt{\lambda}}^{n-1}} e^{ix \cdot \xi} \widehat{f}(\xi) d\sigma_{\sqrt{\lambda}}(\xi) \lambda^{-\frac{1}{2}}$$

if $\lambda \geq 0$ and $F(\lambda) = 0$ if $\lambda < 0$. Then, by Plancherel's theorem in t, we get

$$\begin{split} \left\| e^{it\Delta} f \right\|_{L^2_{x,t}(|V|)}^2 &= \frac{2\pi}{4(2\pi)^{2n}} \int_{\mathbb{R}^n} \left(\int_{\mathbb{R}} |F(\lambda)|^2 d\lambda \right) |V(x)| dx \\ &= \frac{\pi}{2(2\pi)^{2n}} \int_{\mathbb{R}^n} \left(\int_0^\infty \left| \int_{S^{n-1}_{\sqrt{\lambda}}} e^{ix\cdot\xi} \widehat{f}(\xi) d\sigma_{\sqrt{\lambda}}(\xi) \right|^2 \lambda^{-1} d\lambda \right) |V(x)| dx \\ &= \frac{\pi}{(2\pi)^{2n}} \int_0^\infty \left(\int_{\mathbb{R}^n} \left| \int_{S^{n-1}_{-1}} e^{ix\cdot\xi} \widehat{f}(\xi) d\sigma_r(\xi) \right|^2 |V(x)| dx \right) r^{-1} dr. \end{split}$$

Now, we consider the n = 3 case and apply the result on the best constant of the Stein-Tomas restriction theorem in \mathbb{R}^3 obtained by Foschi [16]. That is,

$$\|\widehat{fd\sigma}\|_{L^4(\mathbb{R}^3)} \le 2\pi \|f\|_{L^2(S^2)}$$

where

$$\widehat{fd\sigma}(x) = \int_{S^{n-1}} e^{-ix\cdot\xi} f(\xi) d\sigma(\xi).$$

Interpolating this with a trivial estimate

$$\|\widehat{fd\sigma}\|_{L^{\infty}(\mathbb{R}^3)} \le \|f\|_{L^1(S^2)} \le \sqrt{4\pi} \|f\|_{L^2(S^2)},$$

we get

$$\|\widehat{fd\sigma}\|_{L^6(\mathbb{R}^3)} \le 2^{1/6} (2\pi)^{5/6} \|f\|_{L^2(S^2)}.$$

By Hölder's inequality, we have

$$\begin{split} \left(\int_{\mathbb{R}^{3}} \left| \int_{S^{2}} e^{ix \cdot \xi} \widehat{f}(\xi) d\sigma(\xi) \right|^{2} |V(x)| dx \right) &\leq \left\| \int_{S^{2}} e^{ix \cdot \xi} \widehat{f}(\xi) d\sigma(\xi) \right\|_{L^{6}}^{2} \|V\|_{L^{3/2}} \\ &\leq 2^{1/3} (2\pi)^{5/3} \|V\|_{L^{3/2}} \|\widehat{f}\|_{L^{2}(S^{2})}^{2}. \end{split}$$

So we get

$$\begin{split} \left\| e^{it\Delta} f \right\|_{L^2_{x,t}(|V|)}^2 & \leq \frac{\pi}{(2\pi)^6} 2^{1/3} (2\pi)^{5/3} \|V\|_{L^{3/2}} \|\widehat{f}\|_{L^2}^2 \\ & = \frac{1}{2\pi^{1/3}} \|V\|_{L^{3/2}} \|f\|_{L^2}^2. \end{split}$$

By the argument as in the proof of Theorem 1.1, we have

$$\begin{split} \|e^{itH}f\|_{L^{2}_{x,t}(|V|)} &\leq \|e^{it\Delta}f\|_{L^{2}_{x,t}(|V|)} + \|\int_{0}^{t} e^{i(t-s)\Delta}V(x)e^{isH}fds\|_{L^{2}_{x,t}(|V|)} \\ &\leq \frac{1}{\sqrt{2}\pi^{1/6}}\|V\|_{L^{3/2}}^{\frac{1}{2}}\|f\|_{L^{2}} + \frac{1}{2\pi^{1/3}}\|V\|_{L^{3/2}}\|V(x)e^{itH}f\|_{L^{2}_{x,t}(|V|^{-1})} \\ &= \frac{1}{\sqrt{2}\pi^{1/6}}\|V\|_{L^{3/2}}^{\frac{1}{2}}\|f\|_{L^{2}} + \frac{1}{2\pi^{1/3}}\|V\|_{L^{3/2}}\|e^{itH}f\|_{L^{2}_{x,t}(|V|)}. \end{split}$$

Thus, if $||V||_{L^{3/2}} < 2\pi^{1/3}$, then

$$\|e^{itH}f\|_{L^2_{x,t}(|V|)} \le C_V \|f\|_{L^2}.$$
 (2.8)

Using (2.8) instead of (2.3) in that argument, the proof of Theorem 1.2 is complete.

3. The equivalence of two norms involving H and $-\Delta$ in \mathbb{R}^3

In this section, we investigate some conditions on *H* and *p* with which the equivalence

$$\|H^{\frac{1}{4}}f\|_{L^{p}(\mathbb{R}^{3})} \approx C_{H,p} \|(-\Delta)^{\frac{1}{4}}f\|_{L^{p}(\mathbb{R}^{3})}$$

holds. This equivalence was studied in [7] and [4] that are of independent interest. We now introduce such an equivalence in a form for n = 3, which enables us to include the endpoint estimate also for that dimension.

Proposition 3.1. Given $A \in L^2_{loc}(\mathbb{R}^3;\mathbb{R}^3)$ and $V : \mathbb{R}^3 \to \mathbb{R}$ measurable, assume that the operators $\Delta_A = -(\nabla - iA)^2$ and $H = -\Delta_A + V$ are self-adjoint and positive on L^2 and that (1.13) holds. Moreover, assume that V_+ is of Kato class and that A and V satisfy (1.8) and

$$|A(x)|^2 + |\nabla \cdot A(x)| + |V(x)| \le C_0 \min\left(\frac{1}{|x|^{2-\epsilon}}, \frac{1}{|x|^{2+\epsilon}}\right)$$
 (3.1)

for some $0 < \epsilon \le 2$ and $C_0 > 0$. Then the following estimates hold:

$$||H^{\frac{1}{4}}f||_{L^{p}} \le C_{\epsilon,p}C_{0}||(-\Delta)^{\frac{1}{4}}f||_{L^{p}}, \quad 1 (3.2)$$

$$||H^{\frac{1}{4}}f||_{L^{p}} \ge C_{p}||(-\Delta)^{\frac{1}{4}}f||_{L^{p}}, \quad \frac{4}{3} (3.3)$$

In showing this, we only prove (3.2) as estimate (3.3) is the same as [7, Theorem 1.2]. When 1 , estimate (3.2) easily follows from the Sobolev embedding theorem. However, toextend the range of p up to 6, we need a precise estimate which depends on ϵ in (3.1). Toward this, we introduce a weighted Sobolev inequality as below.

Lemma 3.2 (Theorem 1(B) in [29]). Suppose $0 < \alpha < n$, $1 and <math>v_1(x)$ and $v_2(x)$ are nonnegative measurable functions on \mathbb{R}^n . Let $v_1(x)$ and $v_2(x)^{1-p'}$ satisfy the reverse doubling condition: there exist $\delta, \epsilon \in (0, 1)$ such that

$$\int_{\delta Q} v_1(x) dx \le \epsilon \int_Q v_1(x) dx \quad \text{for all cubes} \quad Q \subset \mathbb{R}^n.$$

Then the inequality

$$\left(\int_{\mathbb{R}^n} |f(x)|^q v_1(x) dx\right)^{\frac{1}{q}} \le C \left(\int_{\mathbb{R}^n} \left| (-\Delta)^{\alpha/2} f(x) \right|^p v_2(x) dx\right)^{\frac{1}{p}}$$

holds if and only if

$$|Q|^{\frac{\alpha}{n}-1}\Big(\int_Q v_1(x)dx\Big)^{\frac{1}{q}}\Big(\int_Q v_2(x)^{1-p'}dx\Big)^{\frac{1}{p'}}\leq C\quad \textit{for all cubes}\quad Q\subset\mathbb{R}^n.$$

From Lemma 3.2, we obtain a weighted estimate as follows.

Lemma 3.3. Let f be a $C_0^{\infty}(\mathbb{R}^3)$ function, and suppose that a nonnegative weight function wsatisfies

$$w(x) \le \min\left(\frac{1}{|x|^{2-\epsilon}}, \frac{1}{|x|^{2+\epsilon}}\right) \tag{3.4}$$

for some $0 < \epsilon \le 2$. Then, for any 1 , we have

$$||fw||_{L^p} \leq C_{\epsilon,p} ||\Delta f||_{L^p}.$$

Proof. For all 1 , we directly get

$$\left\| \frac{1}{|x|^2} f \right\|_{L^p} \le C \left\| \frac{1}{|x|^2} \right\|_{L^{\frac{3}{2}, \infty}} \|f\|_{L^{\frac{3p}{3-2p}, p}} \le C \|\Delta f\|_{L^p} \tag{3.5}$$

from Hölder's inequality in Lorentz spaces and the Sobolev embedding theorem. For $p=\frac{3}{2}$, by Hölder's inequality, we get

$$\left(\int_{\mathbb{R}^3} |f(x)|^{\frac{3}{2}} w(x)^{\frac{3}{2}} dx\right)^{\frac{2}{3}} \leq \left(\int_{\mathbb{R}^3} |f(x)|^q w(x)^{(1-\theta)q} dx\right)^{\frac{1}{q}} \left(\int_{\mathbb{R}^3} w(x)^{\frac{3q}{2q-3}\theta} dx\right)^{\frac{2q-3}{3q}}$$

for any $\frac{3}{2} < q < \infty$ and $0 < \theta < 1$. Taking $\theta = 1 - \frac{3}{2q}$, we have

$$\left(\int_{\mathbb{R}^{3}} |f(x)|^{\frac{3}{2}} w(x)^{\frac{3}{2}} dx\right)^{\frac{2}{3}} \leq C_{\epsilon,q} \left(\int_{\mathbb{R}^{3}} |f(x)|^{q} w(x)^{\frac{3}{2}} dx\right)^{\frac{1}{q}}$$

because of (3.4). Thus, using Lemma 3.2 with $\alpha = 2$, $(p,q) = (\frac{3}{2},q)$, $v_1(x) = w(x)^{\frac{3}{2}}$ and $v_2(x) \equiv 1$, we have

$$\left(\int_{\mathbb{R}^3} |f(x)|^{\frac{3}{2}} w(x)^{\frac{3}{2}} dx\right)^{\frac{2}{3}} \le C_{\epsilon,q} \left(\int_{\mathbb{R}^3} |\Delta f(x)|^{\frac{3}{2}} w(x)^{\frac{3}{2}} dx\right)^{\frac{2}{3}}.$$
 (3.6)

Combining (3.5) and (3.6), the proof is complete.

Finally, we prove Proposition 3.1. We use Stein's interpolation theorem to the analytic family of operators $T_z = H^z \cdot (-\Delta)^{-z}$, where H^z and $(-\Delta)^{-z}$ are defined by the spectral theory. Denoting z = x + iy, we can decompose

$$T_z = T_{x+iy} = H^{iy}H^x(-\Delta)^{-x}(-\Delta)^{-iy}$$

In fact, the operators H^{iy} and $(-\Delta)^{-iy}$ are bounded according to the following result.

Lemma 3.4 (Proposition 2.2 in [7]). Consider the self-adjoint and positive operators $-\Delta_A$ and $H = -\Delta_A + V$ on L^2 . Assume that $A \in L^2_{loc}(\mathbb{R}^3; \mathbb{R}^3)$ and that the positive and negative parts V_{\pm} of V satisfy: V_{+} is of Kato class and

$$\|V_-\|_K < \frac{\pi^{3/2}}{\Gamma(1/2)}.$$

Then for all $y \in \mathbb{R}$, the imaginary powers H^{iy} satisfy the (1,1) weak type estimate

$$||H^{iy}||_{L^1\to L^{1,\infty}} \le C(1+|y|)^{\frac{3}{2}}.$$

Lemma 3.4 follows from the pointwise estimate for the heat kernel $p_t(x, y)$ of the operator e^{-tH} as

$$|p_t(x,y)| \le \frac{(2t)^{-3/2}}{\pi^{3/2} - \Gamma(1/2) ||V_-||_K} e^{-\frac{|x-y|^2}{8t}}.$$

Regarding this estimate, one may refer to some references [4, 9, 30, 31].

By Lemma 3.4, we get

$$||T_{iy}f||_p \le C(1+|y|)^3 ||f||_p \quad \text{for all } 1 (3.7)$$

Then by (1.13), we have

$$||T_{iy}f||_{BMO_H} := ||M_H^{\#}(H^{iy}(-\Delta)^{-iy}f)||_{L^{\infty}}$$

$$\leq C(1+|y|)^{\frac{3}{2}}||(-\Delta)^{-iy}f||_{BMO} \leq C(1+|y|)^3||f||_{L^{\infty}}, \tag{3.8}$$

where

$$M_H^{\#}f(x) := \sup_{r>0} \frac{1}{|B(x,r)|} \int_{B(x,r)} |f(y) - e^{-r^2 H} f(y)| dy < \infty.$$

Next, consider the operator T_{1+iy} . If

$$||H(-\Delta)^{-1}f||_{L^p} \le C||f||_{L^p} \quad \text{for all } 1 (3.9)$$

then by (3.7), we get

$$||T_{1+iy}f||_{L^p} \le C||f||_{L^p} \quad \text{for all } 1 (3.10)$$

Taking $T_z f := M_H^{\#}(T_z f)$ and applying (3.10) with a basic property¹:

$$||M_H^{\#}f||_{L^p} \le C||f||_{L^p}$$
 for all $1 , (3.11)$

we have

$$\|\widetilde{T}_{1+iy}f\|_{L^p} \le C\|f\|_{L^p} \quad \text{for all } 1 (3.12)$$

So, applying Stein's interpolation theorem to (3.8) and (3.12), we obtain

$$\|\widetilde{T}_{1/4}f\|_{L^p} \le C\|f\|_{L^p}$$
 for all $1 ,$

and using (3.11) again, we have

$$||H^{1/4}f||_{L^p} \le C||(-\Delta)^{1/4}f||_{L^p}$$
 for all $1 .$

Now, we handle the remaining part (3.9); that is, we wish to establish the estimate

$$||Hf||_{I^p} \leq C||\Delta f||_{I^p}.$$

For a Schwartz function *f* , we can write

$$Hf = -\Delta f + 2iA \cdot \nabla f + (|A|^2 + i\nabla \cdot A + V)f. \tag{3.13}$$

From Hölder's inequality in Lorentz spaces and the Sobolev embedding theorem, we get

$$||A \cdot \nabla f||_{L^r} \le C||A||_{L^{3,\infty}} ||\nabla f||_{L^{\frac{3r}{3-r},r}} \le C||A||_{L^{3,\infty}} ||\Delta f||_{L^r}$$

for all 1 < r < 3. On the other hand, applying Lemma 3.3 to (3.1), we get

$$\|(|A|^2 + i\nabla \cdot A + V)f\|_{L^r} \le CC_0 \|\Delta f\|_{L^r}$$

¹Some properties of the *BMO*₁ space can be found in [10].

for all $1 < r \le \frac{3}{2}$. Thus we have

$$||Hf||_{L^r} \le C||\Delta f||_{L^r}$$
 for all $1 < r \le \frac{3}{2}$,

and this implies Proposition 3.1.

4. Proof of Theorem 1.3

In this final section, we prove Theorem 1.3. This part follows an argument in [7]. Let u be a solution to problem (1.1) of the magnetic Schrödinger equation in \mathbb{R}^{n+1} . By (3.13), we can expand H in (1.1):

$$H = -\Delta + 2iA \cdot \nabla + |A|^2 + i\nabla \cdot A + V.$$

Thus, by Duhamel's principle and the Coulomb gauge condition (1.10), we have a formal solution to (1.1) given by

$$u(x,t) = e^{itH} f(x) = e^{it\Delta} f(x) - i \int_0^t e^{i(t-s)\Delta} R(x,\nabla) e^{isH} f ds, \tag{4.1}$$

where

$$R(x, \nabla) = 2iA \cdot \nabla_A - |A|^2 + V.$$

From [27] and [22] (see also (3.4) in [7]), it follows that for every admissible pair (r, q),

$$\left\| |\nabla|^{\frac{1}{2}} \int_0^t e^{i(t-s)\Delta} F(\cdot, s) ds \right\|_{L_t^q L_x^r} \le C_{n,r,q} \sum_{j \in \mathbb{Z}} 2^{j/2} \|\chi_{C_j} F\|_{L_{x,t}^2}, \tag{4.2}$$

where $C_j = \{x : 2^j \le |x| \le 2^{j+1}\}$ and χ_{C_j} is the characteristic function of the set C_j . Then, from (4.1), (1.3) and (4.2), we know that

$$\||\nabla|^{\frac{1}{2}}u\|_{L_{t}^{q}L_{x}^{r}} \leq \||\nabla|^{\frac{1}{2}}e^{it\Delta}f\|_{L_{t}^{q}L_{x}^{r}} + \||\nabla|^{\frac{1}{2}}\int_{0}^{t}e^{i(t-s)\Delta}R(x,\nabla)e^{isH}fds\|_{L_{t}^{q}L_{x}^{r}}$$

$$\leq C_{n,r,q}\||\nabla|^{1/2}f\|_{L_{x}^{2}} + C_{n,r,q}\sum_{j\in\mathbb{Z}}2^{j/2}\|\chi_{C_{j}}R(x,\nabla)e^{itH}f\|_{L_{x,t}^{2}}.$$

For the second term in the far right-hand side, we get

$$\left\| \chi_{C_j} R(x, \nabla) e^{itH} f \right\|_{L^2_{x,t}} \leq 2 \left\| \chi_{C_j} A \cdot \nabla_A e^{itH} f \right\|_{L^2_{x,t}} + \left\| \chi_{C_j} (|A|^2 + |V|) e^{itH} f \right\|_{L^2_{x,t}}.$$

Next, we will use a known result in [15], which is a smoothing estimate for the magnetic Schrödinger equation.

Lemma 4.1 (Theorems 1.9 and 1.10 in [15]). Assume $n \geq 3$, A and V satisfy conditions (1.10), (1.11), and (1.12). Then, for any solution u to (1.1) with $f \in L^2$ and $-\Delta_A f \in L^2$, the following estimate holds:

$$\sup_{R>0} \frac{1}{R} \int_0^\infty \int_{|x| \le R} |\nabla_A u|^2 dx dt + \sup_{R>0} \frac{1}{R^2} \int_0^\infty \int_{|x| = R} |u|^2 d\sigma(x) dt$$

$$\leq C_A \|(-\Delta_A)^{\frac{1}{4}} f\|_{L^2}^2.$$

From (1.9) with Lemma 4.1, we have

$$\begin{split} &\sum_{j\in\mathbb{Z}} 2^{j/2} \left\| \chi_{C_{j}} A \cdot \nabla_{A} e^{itH} f \right\|_{L^{2}_{x,t}} \\ &\leq \sum_{j\in\mathbb{Z}} 2^{j} \left(\sup_{x\in C_{j}} |A| \right) \left(\frac{1}{2^{j+1}} \int_{0}^{\infty} \int_{|x| \leq 2^{j+1}} |\nabla_{A} u|^{2} dx dt \right)^{\frac{1}{2}} \\ &\leq \left(\sum_{j\in\mathbb{Z}} 2^{j} \sup_{x\in C_{j}} |A| \right) \left(\sup_{R>0} \frac{1}{R} \int_{0}^{\infty} \int_{|x| \leq R} |\nabla_{A} u|^{2} dx dt \right)^{\frac{1}{2}} \\ &\leq C_{A,\epsilon} \left\| \left(-\Delta_{A} \right)^{\frac{1}{4}} f \right\|_{L^{2}_{x}} \end{split}$$

and

$$\begin{split} & \sum_{j \in \mathbb{Z}} 2^{j/2} \left\| \chi_{C_{j}} (|A|^{2} + |V|) e^{itH} f \right\|_{L_{x,t}^{2}} \\ & \leq \sum_{j \in \mathbb{Z}} 2^{j/2} \left(\sup_{x \in C_{j}} \left(|A|^{2} + |V| \right) \right) \left(\int_{2^{j}}^{2^{j+1}} r^{2} \int_{0}^{\infty} \frac{1}{r^{2}} \int_{|x| = r} |u|^{2} d\sigma_{r}(x) dt dr \right)^{\frac{1}{2}} \\ & \leq \left(\sum_{j \in \mathbb{Z}} 2^{2^{j}} \sup_{x \in C_{j}} \left(|A|^{2} + |V| \right) \right) \left(\sup_{R > 0} \frac{1}{R^{2}} \int_{0}^{\infty} \int_{|x| = R} |u|^{2} d\sigma_{R}(x) dt \right)^{\frac{1}{2}} \\ & \leq C_{A,V,\epsilon} \left\| \left(-\Delta_{A} \right)^{\frac{1}{4}} f \right\|_{L_{x}^{2}}. \end{split}$$

That is,

$$\||\nabla|^{\frac{1}{2}}e^{itH}f\|_{L^{q}_{u}L^{r}_{u}} \leq C_{n,r,q}\||\nabla|^{1/2}f\|_{L^{2}_{u}} + C_{n,r,q,A,V,\epsilon}\|(-\Delta_{A})^{\frac{1}{4}}f\|_{L^{2}_{u}}.$$

First, consider the case n = 3. By (1.9), estimate (3.2) in Proposition 3.1 holds for all $1 . (Here, <math>H = -\Delta_A + V$.) Then by (3.3) in Proposition 3.1, we get

$$\|H^{\frac{1}{4}}e^{itH}f\|_{L_{t}^{q}(\mathbb{R};L_{x}^{r}(\mathbb{R}^{3}))} \leq C\||\nabla|^{\frac{1}{2}}e^{itH}f\|_{L_{t}^{q}(\mathbb{R};L_{x}^{r}(\mathbb{R}^{3}))}$$

$$\leq C\||\nabla|^{\frac{1}{2}}f\|_{L_{x}^{2}(\mathbb{R}^{3})} + C\|(-\Delta_{A})^{\frac{1}{4}}f\|_{L_{x}^{2}(\mathbb{R}^{3})}$$

$$\leq C\|H^{\frac{1}{4}}f\|_{L_{x}^{2}(\mathbb{R}^{3})}$$

$$(4.3)$$

for all admissible pairs (r, q). (It clearly includes the endpoint case (n, r, q) = (3, 6, 2).)

Next, for the case $n \ge 4$, we already know that (3.2) holds for 1 and that (3.3) isvalid for $\frac{4}{3} under the same conditions on A and V (see [7, Theorem 1.2]). Thus, we$ can easily get the same bound as (4.3) for all admissible pairs (r, q).

Since the operators $H^{\frac{1}{4}}$ and e^{itH} commutes, we get

$$||e^{itH}f||_{L_t^q(\mathbb{R};L_x^r(\mathbb{R}^n))} \le C||f||_{L_x^2(\mathbb{R}^n)}$$

from (4.3), and this completes the proof.

Acknowledgments

Y. Koh was partially supported by NRF Grant 2016R1D1A1B03932049 (Republic of Korea). The authors thank the referee for careful reading of the manuscript and many invaluable comments.

References

- [1] Barceló, J.A., Ruiz, A., Vega, L. (2006). Some dispersive estimates for Schrödinger equations with repulsive potentials. *J. Funct. Anal.* 236:1–24.
- [2] Beceanu, M., Goldberg, M. (2012). Schrödinger dispersive estimates for a scaling-critical class of potentials. *Commun. Math. Phys.* 314:471–481.
- [3] Burq, N., Planchon, F., Stalker, J., Tahvildar-Zadeh, S. (2004). Strichartz estimates for the wave and Schrödinger equations with potentials of critical decay. *Indiana Univ. Math. J.* 53:1665–1680.
- [4] Cacciafesta, F., D'Ancona, P. (2012). Weighted L^p estimates for powers of selfadjoint operators. Adv. Math. 229:501–530.
- [5] Christ, M., Kiselev, A. (2001). Maximal operators associated to filtrations. *J. Funct. Anal.* 179:409–425.
- [6] D'Ancona, P., Fanelli, L. (2008). Strichartz and smoothing estimates for dispersive equations with magnetic potentials. *Commun. Partial Differential Equations* 33:1082–1112.
- [7] D'Ancona, P., Fanelli, L., Vega, L., Visciglia, N. (2010). Endpoint Strichartz estimates for the magnetic Schrödinger equation. *J. Funct. Anal.* 258:3227–3240.
- [8] Duong, X.T., Duong, X.T., Sikora, A., Yan, L. (2008). Comparison of the classical BMO with the BMO spaces associated with operaotrs and applications *Rev. Math. Iberoam.* 24:267–296.
- [9] Duong, X.T., Sikora, A., Yan, L. (2011). Weighted norm inequalities, Gaussian bounds and sharp spectral multipliers. *J. Funct. Anal.* 260:1106–1131.
- [10] Duong, X.T., Yan, L. (2005). New function spaces of BMO type, the John-Nirenberg inequality, interpolation, and applications. *Commun. Pure Appl. Math.* 58:1375–1420.
- [11] Erdogan, M.B., Goldberg, M., Schlag, W. (2008). Strichartz and smoothing estimates for Schrödinger operators with large magnetic potentials in \mathbb{R}^3 . *J. Eur. Math. Soc.* 10:507–532.
- [12] Erdogan, M.B., Goldberg, M., Schlag, W. (2009). Strichartz and smoothing estimates for Schrödinger operators with almost critical magnetic potentials in three and higher dimensions. Forum Math. 21:687–722.
- [13] Fanelli, L., Felli, V., Fontelos, M.A., Primo, A. (2013). Time decay of scaling critical electromagnetic Scrödinger flows. *Commun. Math. Phys.* 324:1033–1067.
- [14] Fanelli, L., Garcia, A. (2011). Counterexamples to Strichartz estimates for the magnetic Scrödinger equation. *Commun. Contemp. Math.* 13:213–234.
- [15] Fanelli, L., Vega, L. (2009). Magnetic virial identities, weak dispersion and Strichartz inequalities. Math. Ann. 344:249–278.
- [16] Foschi, D. (2015). Global maximizers for the sphere adjoint Fourier restriction inequality. J. Funct. Anal. 268:690–702.
- [17] Georgiev, V., Stefanov, A., Tarulli, M. (2007). Smoothing Strichartz estimates for the Schrödinger equation with small magnetic potential. *Discrete Contin. Dyn. Syst.* 17:771–786.
- [18] Goldberg, M. (2006). Dispersive estimates for the three-dimensional Schrödinger equation with rough potential. *Am. J. Math.* 128:731–750.
- [19] Goldberg, M. (2011). Strichartz estimates for Schrödinger operators with a non-smooth magnetic potential. *Discrete Contin. Dyn. Syst.* 31:109–118.
- [20] Goldberg, M., Schlag, W. (2004). Dispersive estimates for Schrödinger operators in dimensions one and three. Commun. Math. Phys. 251:157–178.
- [21] Goldberg, M., Vega, L., Visciglia, N. (2006). Counterexamples of Strichartz inequalities for Schrödinger equations with repulsive potentials. *Int. Math. Res. Not.* 2006:article ID 13927.
- [22] Ionescu, A.D., Kenig, C. (2005). Well-posedness and local smoothing of solutions of Schrödinger equations. Math. Res. Lett. 12:193–205.
- [23] Keel, M., Tao, T. (1998). Endpoint Strichartz estimates. Am. J. Math. 120:955–980.
- [24] Marzuola, J., Metcalfe, J., Tataru, D. (2008). Strichartz estimates and local smooting estimates for asymptotically flat Schrödinger equation. *J. Funct. Anal.* 255:1497–1553.
- [25] Peetre, J. (1966). On convolution operators leaving $L^{p,\lambda}$ spaces invariant. Ann. Mat. Pura Appl. 72:295–304.
- [26] Rodnianski, I., Schlag, W. (2004). Time decay for solutions of Schrödinger equations with rough and time-dependent potentials. *Invent. Math.* 155:451–513.

- [27] Ruiz, A., Vega, L. (1993). On local regularity of Schrödinger equations. Int. Math. Res. Not. 1993:13-27.
- [28] Ruiz, A., Vega, L. (1994). Local regularity of solutions to wave equations with time-dependent potentials. Duke Math. J. 76:913-940.
- [29] Sawyer, E., Wheeden, R.L. (1992). Weighted inequalities for fractional integrals on Euclidean and homogeneous spaces. Am. J. Math. 144:813-874.
- [30] Sikora, A., Wright, J. (2000). Imaginary powers of Laplace operators. Proc. Am. Math. Soc. 129:1745-1754.
- [31] Simon, B. (1982). Schrödinger semigroups. Bull. Am. Math. Soc. 7:447-526.
- [32] Stefanov, A. (2007). Strichartz estimates for the magnetic Schrödinger equation. Adv. Math. 210:246-303.
- [33] Strichartz, R.S. (1977). Restriction of Fourier transforms to quadratic surfaces and decay of solutions of wave equations. Duke Math. J. 44:705-714.